
The Missing Protocol of the Internet

Multisynq Litepaper
April 2024

Version 1.3w

Multisynq—It’s About Time 2
How the Multisynq Protocol Works 4

Deterministic Computation 5

Snapshots 6

Session Registry 7

Quality of Service 7

Security & Robustness 8

Why DePIN? 9

Burn & Mint 9

Proof of Service 11

Roadmap 12

Multisynq Project Phases 13

Phase 0: Initial Designs, Proof of Concept 13

Phase 1: Kernel Development, Framework Development, Tokenomics
Design 13

Multisynq Glossary 16
Introduction 16

Multisynq Core System 16

Multisynq DePIN Tokenomics 20

LEGAL DISCLAIMER 23

1

Multisynq—It’s About Time
The internet happens in real time. Every second of every day, hundreds of
millions of people across the globe depend upon instantaneous connectivity
to work and play together—from armies of hardcore gamers battling each
other in online multiplayer games, to teams of doctors consulting in virtual
reality to save lives, and legions of investors tracking and responding to fleeting
changes in the market.

In 2023, the global online gaming market generated approximately 26.14
billion U.S. dollars in revenues, which translates to a 9.8 percent growth
compared to the previous year. There are an estimated 1.1 billion online gamers
worldwide with China, South Korea, and Japan having the biggest online
gaming reach among the population.
https://www.statista.com/topics/1551/online-gaming/

https://www.statista.com/statistics/240987/global-online-games-revenue/

2

https://www.statista.com/topics/1551/online-gaming/
https://www.statista.com/statistics/240987/global-online-games-revenue/

Growth in collaborative enterprise applications is also strong. It is expected to
grow from USD 17.5 billion in 2021 to USD 40.79 billion in 2028 at a CAGR of
13.2% during the 2021-2028 period.1

With so many things on the internet depending on real-time interactions, it’s
strange that there’s no general-purpose solution for real-time synchronization.
Large multiplayer games run on bespoke servers. Virtual trading floors and
medical collaboration apps use entirely different real-time networks.

All these multi-user applications suffer from lag spikes and glitches caused by
lost connectivity. In addition, creating new ways to collaborate online is
hamstrung by the need to reinvent the wheel whenever an entrepreneur
wants to exploit a new niche.

That’s where Multisynq comes in. The Multisynq Protocol is a robust
general-purpose synchronization system for the Internet that relies on a
decentralized fleet of DePIN Multisynq Synchronizers. The host of a
Synchronizer is called a “Synqer”,. a person (and device) whose Internet
connected digital resources are used for application synchronization. A “Coder”
is the developer of a Multisynq application. The Coder is responsible for
providing access to their application and for payments enabling users to
access and use the Synqer’s Synchronizer. Rather than being forced to build a
secure solution from scratch or suffer from connectivity issues, The Coder can
simply use Multisynq’s global infrastructure of Synchronizers to create their
multi-user apps and games. That’s why Multisynq has been called “the missing
Internet protocol”. It adds easy multi-user synchronization to the standard suite
of frameworks available to developers.

And it does so in a way that is scalable. Built as a DePIN (Decentralized Physical
Infrastructure) platform, the Multisynq network automatically adds capacity as
more users need synchronization. There’s a built-in financial incentive for
Synqers, who host Multisynq Synchronizers, to add bandwidth resources to the
pool. That means there’s no upper bound on how many users can use
Multisynq at the same time, no limitations because of bandwidth or latency,
and no artificial constraint on the unlimited demand for synchronization.

The Multisynq Foundation is dedicated to fostering the success of the
Multisynq Network around the world for developers and Synchronizer hosts
and other members of the Multisynq ecosystem.

Croquet Labs is the software engineering and technology provider to the
Multisynq Foundation.

1 Fortune Business Insights: Team Collaboration Software Market Size, Share & COVID-19 Impact Analysis

3

https://www.fortunebusinessinsights.com/industry-reports/team-collaboration-software-market-101327

How theMultisynq ProtocolWorks
The core idea behind the Multisynq Protocol is decentralized deterministic
computation.

A typical multi-user system has a powerful central server that performs all
important calculations. It transmits the results of these calculations to its
clients so they can stay in sync with each other.

There are two problems with this approach:
● Central servers are complicated to program and expensive to maintain.
● Transmitting state info to the clients takes a lot of bandwidth.

Multisynq replaces the heavy central server with a worldwide fleet of
lightweight, stateless Synchronizers.. No application computation actually
occurs on the Synchronizer, nor is there a need to communicate with each
other. The only role of a Synchronizer is to serve as a shared clock, supplying all
the participating clients in a multi-user application with time stamped,
replicated user events and synchronization ticks. All computation happens on
the clients themselves. They stay in sync because Multisynq’s built-in libraries
guarantee bit-identical results for all computations on all platforms.

4

The Multisynq Network will have hundreds of thousands (eventually millions)
of Synchronizers deployed around the world, with the objective of delivering
the same high quality experience in New York City as in a village in a
developing country.

*Compute and state are decentralized to the shared virtual machine running on user devices while time is managed
within the Synchronizer, which is selected based on geography of the session.

Deterministic Computation
Multisynq is designed to ensure bit identical computation occurs within the
same session on a variety of devices and operating systems. As an example,
different operating systems often return slightly different values for
transcendental functions like sin() or cos(). Even a tiny source of divergence like
this will—over thousands or millions of calculations—gradually cause two
systems to arrive at very different results.

Multisynq avoids this problem by patching all sources of divergence with its
own deterministic code. It even has its own random(). Multisynq clients will
always generate exactly the same stream of pseudorandom numbers, so even
complicated Monte Carlo simulations stay perfectly in sync.

However, one potential source of divergence can’t be fixed with deterministic
libraries—user input. The whole point of a multi-user application is to let

5

multiple people interact in real-time. Of course, every user will make different
choices which affect the state of the shared simulation.

Multisynq deals with user input by passing it through the Synchronizer,
interleaved with the synchronization ticks. Every client receives the same user
input with the same timestamp so they all stay in sync.

Snapshots

When a new client joins a running Multisynq session, it needs to be brought
up to speed with the current state of the system. Once it’s in sync with the
other clients, it will stay in sync forever, but how does it get in sync in the first
place?

The answer is the snapshot system. Periodically all Multisynq clients take a
snapshot of their internal state and send it to the Synchronizer. This period
depends on the complexity of the computation, where heavier workloads
result in more frequent snapshots . When the snapshot occurs, every
participating client performs a quick test to verify the replicated states are
identical by computing and sharing the hash of that state, and one of the
clients, typically the fastest, constructs and saves a snapshot to the cloud.

When a new client joins, the Synchronizer sends it the last snapshot along with
any messages sent to the other clients since the snapshot was taken. The new
client initializes itself with the snapshot, then quickly replays the messages it
missed, bringing itself in sync.

Clients can join and leave Multisynq sessions freely without disrupting the flow
of the simulation. The speed of individual clients is also immaterial. A slow
client can be in the same session as a fast client without dragging it down.

If every client drops out, the simulation freezes at the time of the last message
before a snapshot. A new client can join weeks or months later and take up the
simulation at exactly the same point where it left off.

6

Session Registry

A key part of the Multisynq infrastructure is the Session Registry. The registry
routes connecting clients to the Synchronizer handling their desired session. It
also serves as a system-wide load-balancer—striving to keep active sessions
spread evenly across the live Synchronizers—and a quality-of-service
monitor—preferentially assigning clients to low-ping Synchronizers with stable
connections.

Synchronizers are completely agnostic to the apps running on them. Multiple
different apps can run on the same Synchronizer simultaneously, and an app
that originally ran on one Synchronizer can dynamically migrate to another.

Quality of Service

The Multisynq network is designed to be self-testing to determine
Synchronizer Quality of Service as a reputation score. Each host application, in
addition to running a Synchronizer, will participate as a client in test sessions
targeting other Synchronizers. All hosts are constantly participating in testing
the network. The Session Registry provides this service, determining which
Synchronizers need to be tested and which hosts will participate in that
testing.

7

These tests are used to determine Synqer/host Quality of Service – they can
also be used to determine the QoS of the tester – as all participants can “see”
the messages from the other participants.

Test sessions are designed to reveal latency, geolocation, scale, and other
parameters that make up the QoS vector. The Synchronizer being tested can’t
tell that the session it is hosting is actually a test – in fact, the host of the
session is paid in tokens as if it is a normal session. Synchronizer hosts to
participate in the session are chosen based upon location and their own
quality of service value. Higher QoS means they are trusted more in
computing the QoS of the target Synchronizer. Local hosts are chosen so that
they can better test the geolocation of the target Synchronizer using a
statistical triangulation algorithm based upon latency.

Security & Robustness
With the application code running directly on the clients it might seem at first
like Multisynq would be vulnerable to a malicious user hacking the simulation
state on his local client. However, the snapshot system protects against this.
Any unauthorized change to a client’s local state is caught when the
Synchronizer will check to make sure all the snapshots match. A diverging
client will be dropped from the session, eliminating the hacker from the
multi-user simulation.

Another layer of security exists in how the Synchronizer handles messages.
Because no computation happens on the Synchronizer, it never needs to read
anything in the message body. All it looks at is the metadata in the message
header. All internal messages and snapshots in Multisynq are end-to-end
encrypted. The system passes them around as raw streams of bytes with no
knowledge of what they contain. Even if a malicious hacker were to gain
access to a Synchronizer, they couldn’t steal or alter the message traffic.

Because any session can run on any Synchronizer, the system can quickly
recover from a Synchronizer failure. If a Synchronizer goes down, the Session
Manager will immediately direct its clients to another Synchronizer, which, if
necessary will be able to rebuild the lost session from the previous snapshot,
and the time stamped user event messages posted since that previous
snapshot.

The system can also compensate for one client having a poor network
connection. Dropped messages won’t affect the other clients in the same

8

session. The marginal client will experience lag, but the other clients will
continue to run normally.

WhyDePIN?

The unique features of Multisynq make it particularly well-suited to
implementation on a Decentralized Physical Infrastructure Network. The
Multisynq Network only manages the Session Registry, the Coder database,
and the snapshot servers in the cloud today. These systems will also be fully
decentralized in the future. The Synchronizers are run by
“Synqers”—individuals or companies who add bandwidth resources to the
network in exchange for $SYNQ which is a cryptocurrency that will be bought
and sold in an online marketplace. When there’s a high demand for
synchronization services, the value of $SYNQ goes up, providing a strong
incentive for Synqers to add more Synchronizers to the network.

Multisynq’s security features protect users from unethical Synqers. There’s no
way for a Synqer to spy on the message traffic flowing through their
Synchronizers. If a Synqer attaches a slow Synchronizer to the network, or one
with an unstable internet connection, the Session Manager will route around it
to faster, more stable Synchronizers. If a Synchronizer abruptly fails, little to no
data is lost and another can quickly take its place. Furthermore, Synqers are
dynamically replaced in a Session on a regular basis so it is difficult for the
Synqer to even track traffic patterns in a Session.

Burn &Mint

The Multisynq tokenomics model consists of a burn and mint mechanism.
After burning a $SYNQ Token, the same (or similar) value is minted in the form
of a Data Token. The key difference between those tokens is that burned
$SYNQ Tokens are subject to price fluctuations, while minted Data Tokens
serve as payment within the ecosystem and their ratio is fixed to the amount
of services provided. This combination provides the opportunity to set a
specific price for the service, which will be fixed once the $SYNQ Token is
converted to a Data Token, regardless of the valuation of the $SYNQ Token.

Multisynq is focusing on a model that is commonly used in the market and is
based on the rule that there is a constant max supply of Tokens in the system.
The system mints the same number of (or possibly fewer) Tokens as are
burned. Thus, the following model assumptions apply:

9

● The number of Minted Tokens equals the number of burned
● Max Total Supply is specified in the system
● The Synqer knows what reward they will receive in Tokens for the service

it provides
● Fiat value used to purchase tokens by Coder should match fiat

converted from tokens by Synqer (if we were to assume instantaneous
transactions)

This model guarantees rewards for the Synqer while not diluting the number
of Tokens. From the Coder/company's perspective the ratio of Data Tokens to
data used (measured in bytes as well as other units of work that may be
performed) is well defined, and from the Synqer's perspective the ratio of bytes
(and consequently Data Tokens) to the number of $SYNQ Tokens they receive
is also well defined.

By controlling the number of tokens in circulation and adjusting them
according to actual use of the service, the value of the $SYNQ Token will reflect
the actual demand and user engagement. A key aspect of the model is its
ability to provide a stable, non-speculative increase in the value of the $SYNQ
Token in proportion to the increasing usage of the service. A balanced
ecosystem is promoted in which equilibrium is maintained, even when there
are fluctuations in demand.

10

Existing DePIN projects that use similar models are:

● Helium – is a decentralized wireless platform that has a $HNT native
token. By burning this token they generate Data Credit tokens, which are
later used in payments on the blockchain. https://www.helium.com/

● Render – they use a similar connection in $RNDR tokens and "Render
Credits." https://rendernetwork.com/

The Multisynq Tokenomics architecture is currently being designed and
simulated.

Proof of Service

Service of the Synchronizer is defined simply by its providing the transfer of
data to all participants within a Session. This data transfer is measured in bytes
where the measured amount of data transferred results in a token reward to
the Synqer hosting the Synchronizer. Multisynq utilizes a consensus
mechanism to provide a proof of service by the Synchronizer to the client, and
hence to the Coder’s application. This is the foundation for how a payment is
determined to the Synqer for the use of their Synchronizer.

There are a number of different kinds of messages from the Synchronizer of a
Session to the participant. We focus on the three that represent by far the
largest amount of data transferred.

● User event messages – these are the messages that are generated by
user interactions – clicking, dragging, moving one's avatar in a space.
These messages are replicated to all other participants via the
Synchronizer.

● Tick messages – these are messages generated by the Synchronizer to
move time forward when there are no user events available. This is used
to enable the replicated simulations advance over time – this can include
things like physics simulations and AI-based bots.

● Snapshots – these are generated at regular intervals and represent the
instantaneous state of the shared client. The snapshot is computed by
one of the participating clients, usually with the fastest compute, and
uploaded directly to the snapshot database manager.

As a key part of that snapshot process, the data size of all the received user
event messages is summed by all participants and the result is also added to
the system state before the hash is computed. In addition, the Synchronizer
itself sums up the size of the messages it sent to the participants during that

11

https://www.helium.com/
https://rendernetwork.com/

snapshot period. This is the basis of part of the consensus proof for the service
provided by the Synchronizer which in turn is the basis of part of the reward
provided to the Synqer.

The tick events provided by the Synchronizer are used to move time forward in
smaller increments than might occur with user event messages by
themselves. This is how Multisynq is able to perform perfectly synchronized
animations on multiple devices. Tick events do not need to be, and sometimes
can’t be identical in timing or size for each session client. In fact, each client
may even have a different tick event rate. Instead, the Synchronizer and each
individual client must agree on the tick rate to be provided at the start of the
snapshot period as well as agree on the actual resulting tick events. This total
amount of data from all clients is summed and is also the basis for part of the
reward provided to the Synqer.

Finally, the snapshot is generated by one of the Session participants and
uploaded to the Snapshot database manager for long term storage. The data
size of the snapshot is also added to the total data transferred by the
Synchronizer. In addition, an extra fee may be added to cover the cost of
storage of the snapshot.

Roadmap
The core technology for Multisynq is already operational under the name
Croquet and has been used for multi-user apps since 2020. The same tech
team that built Croquet is migrating it to Web 3.0 right now—adding hooks to
connect the Synchronizers to the Solana blockchain, and increasing security to
allow third-party hosting Synqers to run Synchronizers.

Next steps are to build better integration frameworks for using Multisynq with
existing technologies—the Unity and Unreal game engines for example, and
the React UI library. The goal is to make adopting Multisynq as easy as possible
for existing developers.

As Multisynq grows as a platform there will be a secondary market for new
tools that are “Multisynq compliant.” An example of this is the Rapier physics
library which was written with Croquet in mind to be fully deterministic and
provide a snapshot of its internal state. Croquet already supports multi-user
physics simulations using Rapier, and there are many other opportunities to
create similar packages for Multisynq—real-time fluid dynamics, finite element
analysis, behavior trees for virtual agents and so on. Initially the Multisynq
Foundation will “prime the pump” with these libraries, but as the platform
becomes more ubiquitous, the opportunities for additional tools will explode.

12

Multisynq Project Phases

Phase 0: Initial Designs, Proof of Concept
This phase of the project began in September 2023 and included the
preliminary designs of the decentralized Synchronization architecture, initial
model of the Tokenomics, and the initial capital raise. Key assumptions were
tested, particularly performance capabilities on various platforms and
networks.

Phase 1: Kernel Development, Framework Development,
Tokenomics Design
The initial kernel development phase began in January, 2024. This phase will
be completed by early May, 2024.

Key elements of this system were designed and are being constructed
including:

● Synchronizer/Host application. A deployable Multisynq Synchronizer
kernel allowing the system to be deployed on traditional servers and as
an Electron application for deployment on personal computer/network
infrastructure. It can also be directly integrated into other DePIN
infrastructure. Since the system is deployed as an Electron application, it
will be easily upgraded by the hosts.

● WebRTC communication. WebRTC is designed to overcome the
challenges of direct communication in the diverse and complex
environment of the Internet. While the idea of a peer communicating
with another peer is simple, things like NATs, the lack of IPv4 addresses,
limited IPv6 support worldwide, different firewall and generic
networking configurations, and lack of standardized firewall APIs tend to
overcomplicate the process. WebRTC provides a solution to these issues.

● Session and Synchronizer Registries. Cloudflare-based registry
databases of available Synchronizers and associated Sessions.

● Session joining infrastructure. Services for connecting users to
Synchronizers hosting Multisynq Sessions.

● STUN/TURN servers. Aiding WebRTC connectivity to Synchronizers
● Snapshot Storage mechanism. Databases for storage and very fast

access to Session Snapshot files.

Along with the Kernel, a number of system frameworks to aid application
development are being developed. These include:

13

● The core JavaScript system. The foundational framework provided as a
library. All frameworks and Multisynq applications are built with this.

● The Worldcore 3D engine framework. This acts as a bridge between
the JavaScript framework and various 3D engines like Three.js and Unity.

● A React framework. React is used by over 40% of all web developers.
The new framework is designed around the workflow of React and the
React developer.

Source: Statista: Most used web frameworks among developers
worldwide, as of 2023

14

https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/

● A Unity game engine framework. This includes a JavaScript/C#
framework as well as a full C# component framework built on top.

The Multisynq Unity framework enables developers to create and test
multi-user systems dynamically within the system while editing.

● Other game engines. Multisynq is being integrated into a number of
additional 3D game engines – starting with the web-based Rogue
Engine.

The Rogue Engine interface directly mimics the Unity platform,
providing a similar development flow including management of
components and simulations.

15

https://rogueengine.io/
https://rogueengine.io/

Multisynq Glossary

Introduction
This glossary is made up of terms used by the Multisynq Core System and the
Multisynq DePIN Tokenomics. These are in separate sections for clarity. These
systems define the Multisynq Network, a low-latency multi-user
synchronization network that allows individuals to monetize their internet
connections by selling surplus bandwidth to developers creating synchronized
multiplayer apps, games, and virtual worlds. The network utilizes a solution
based on a decentralized network of devices providing bandwidth and
minimal computational tasks to users. The network consists of five main
agents: Multisynq, Synqers/hosts, Coders/companies, end users and
speculators.

Multisynq Core System
Bit-identical. The virtual computers synchronized by Multisynq are identical
down to the last bit.

Coder. The developer of a Multisynq application. The Coder is responsible for
providing access to their application and for payments enabling users to
access and use the Synqer’s Synchronizer.

Croquet. The original multi-user protocol that the Multisynq Protocol is based
on. Originally developed by a team that included Alan Kay, a Turing Award
recipient, David P Reed, who designed the UDP protocol, co-designed TCP/IP
and formulated “Reed’s Law”, David A Smith, the creator of the first person
adventure/shooter, the first real time 3D design tool, and was co-founder of
Red Storm Entertainment with Tom Clancy, and Andreas Raab, one of the core
developers of the Squeak Smalltalk system.

Croquet Labs. The software engineering and technology provider to the
Multisynq Foundation.

DePIN (Decentralized Physical Infrastructure). Utilizes tokenized economic
incentives to develop and maintain real-world infrastructure. Multisynq
Synchronizers are decentralized – running on any machine with access to
sufficient resources including bandwidth andminimal compute.

16

Determinism. A deterministic computation will always produce the same
result from a given state. Multisynq relies on determinism to keep all
participants in a Session bit-identical over time.

End-to-End Encryption. All event messages sent to the Synchronizer from the
client are encrypted. The Synchronizer cannot read these messages, all it can
do is add a timestamp and forward the message to all participating clients in a
Session including the originator of the event message. Only these clients can
decrypt the message.

Event Message. A user input event that is forwarded to the Synchronizer
which adds a timestamp and broadcasts the event message to all the
participants in a Session.

Event Message Queue. A queue of event messages sorted by timestamp kept
by the Synchronizer. When a Snapshot is made, the queue is emptied and all
subsequent messages are added. When a new user joins a Session, a Virtual
Computer is initialized with a Snapshot, and the messages in the Event
Message Queue are sent to the new Virtual Computer in order and executed.
The new user is now perfectly synchronized.

Future Message Queue. Messages generated within a Virtual Computer as
part of the synchronized simulation. These messages are sorted by their
timestamp and keep the computation going purely based on the time as
received by tick messages from the Synchronizer, even in the absence of event
messages.

Hash. A fixed size byte code that is computed from the instantaneous state of
a session running on a Multisynq Virtual Computer/client. All participating
Virtual Computers compute this hash at the same virtual time which means
that it is computed based upon the identical state of the Virtual Computer.
This means that the Hash must also be identical on all systems. This is used to
prove that the Virtual Computers have not diverged.

Latency. The time an event message takes for a round trip from the client
participant in a session, to the Synchronizer and back to the client. Multisynq
has the goal of providing between 15 and 30 millisecond latency for accessing
local Synchronizers and the best latency physically possible everywhere else on
the globe.

Model/View. Often referred to as Model/View/Controller. The basis of the
Multisynq client architecture. The model refers to the replicated bit identical
Virtual Computer. The view refers to the user interface which displays the state
of the shared simulation, and gathers input from the user. The controller

17

routes input events from the view as Event Messages to the hosting
Synchronizer.

Multisynq. A multi-user-by-default protocol/platform for low-latency, realtime,
interactive collaboration and shared simulation. It guarantees that all users of
an application are observing bit-identical dynamic states at all times. This
guarantee frees a developer from the bulk of the complexity involved in
traditional multiplayer networking, while still allowing users to run on
arbitrarily different devices.

Multisynq Foundation. Dedicated to fostering the success of the Multisynq
Network around the world for developers and Synchronizer hosts and other
members of the Multisynq ecosystem.

Multisynq Library. Client library used by Multisynq applications to provide the
necessary interfaces and execution environment for the shared Virtual
Computers.

Quality of Service. Or QoS – a metric determined by Synqer/Host peers
testing the service provided by a Synchronizer. This will include metrics such as
latency, bandwidth supported, number of simultaneous users, etc. Developers
can set a minimum level of QoS to be provided by the Synchronizer.
Requested higher levels of quality are more expensive. QoS is evaluated both
through actual usage and dedicated testing sessions. During regular hosted
sessions, metrics such as latency and message reliability are monitored,
triggering further peer testing if disparities arise. Testing sessions are regular
Multisynq Sessions where the participants are other Synqers/Hosts that
perform live consensus tests including scale of users, scale of bandwidth,
latency, and estimated geolocation. Synchronizers being tested cannot
determine if they are running a test session or not, because payment is in
$SYNQ Tokens and all messages are encrypted in the same way any Multisynq
Session is. This testing is managed by the Session Registry.

Session. A shared world running bit-identically on a group of virtual
computers kept in sync by a Synchronizer. End-to-end encryption protects its
privacy. Sessions are regularly saved in the form of a Snapshot. A new user can
join a Session by loading a Session Snapshot and playing back all messages
received since that Snapshot was made.

Session Registry. A global registry of all Synchronizers and all Sessions. The
Session Registry connects users who wish to join a Session to the hosting
Synchronizer, and stores session metadata for later session resumption. If a
Session requested by a user isn't currently hosted, the Session Registry
chooses an available Synchronizer to be the host. All participants must pay for

18

this service. Plans exist to fully decentralize the Session Registry, but this will
also require payments for use.

Snapshot. The state of a replicated virtual machine is captured and saved as a
file on a regular basis. In addition, a hash of this state is generated by all
participants in a Session, the total amount of bandwidth delivered by a
Synchronizer is computed, and subsequent event messages are also saved
until the next Snapshot is generated. This Snapshot state enables new users to
join a session in progress and also allows a session to be later reloaded and
joined exactly in the state the last user left it in.

Synqer/Host. The host of a Multisynq Synchronizer. A person (and device)
whose digital resources are used for application synchronization. Hosts
typically run a single Synchronizer per machine that can in turn run multiple
Sessions. The number of Sessions and number of users per session is
determined by user settings and Quality of Service (QoS). If QoS decreases, the
maximum number of supported sessions automatically decreases as well.
Anyone can become a host, and for providing their digital resources, they
receive compensation in the form of $SYNQ Tokens.

Synchronizer. Multisynq replaces the heavy central server with a worldwide
fleet of lightweight, stateless Synchronizers running on a computer connected
to the Internet. The Synchronizer receives event messages from a user, adds a
timestamp to that message and redistributes it to all the participants in the
session including the originator of the event message. It cannot read that
message. Anyone can host a Synchronizer, and for providing their digital
resources, they receive compensation in the form of $SYNQ Tokens.

Tick Message. Message automatically generated by the Synchronizer to move
time forward in the Session to enable simulations to run continuously without
user interactions.

Timestamp. The synchronizer adds a unique timestamp to each event
message that it processes and forwards to participants in a session. This
Timestamp acts as an external clock to the shared simulation of all session
participants.

Virtual Computer. An isolated computation with strict rules of interaction. Any
computation inside the Virtual Computer happens solely in response to the
stream of ticks and event messages from the synchronizer. Since all computers
in a session receive the exact same sequence of events, and the computation
is deterministic, they are identical to the bit.

19

Multisynq DePIN Tokenomics
Bonus: Geological. A multiplier for the Quality of Service bonus. Its additional
sign-up incentives are available for deploying Synchronizers in underserved
regions. A global heat map indicates areas where Synchronizers are needed,
typically areas with high demand or insufficient local supply. This map might
be based on average latency to geolocated clients.

Burn and Mint. The Multisynq network utilizes a burn-and-mint equilibrium
(BME) model. This model utilizes a two token system: proprietary data tokens
and tradable $SYNQ tokens that attempt to accrue value. Coders, the providers
of the Multisynq application, burn the “value-seeking” tokens in order to
receive the “Data” tokens. There are two important caveats to the data tokens:
(1) data tokens can only be used to acquire services within the specific crypto
network (similar to airline miles)
(2) the exchange rate of value-seeking tokens and Data tokens should be fixed
and denominated in USD or some other external currency.

After burning value-seeking tokens to receive Data tokens, users then spend
the Data tokens in order to use the network’s services. This is a way for the
users to display to the network that the service provider completed the work
for the value-seeking tokens that were burned. These Data tokens are not
transferable. The user isn’t sending them to anyone, they’re merely using them
to acquire a service (again, similar to how a user spends airline miles to get on
a flight).

Service providers then earn rewards by minting $SYNQ tokens which is
independent of the token burning process. As the network grows in usage, the
value-seeking tokens are burned and the tokens accrue more value. As they
grow in value less will need to be burned to receive the same amount of USD
denominated Data tokens. The reverse occurs if usage decreases, thus creating
a dynamic to bring the network to an equilibrium.
https://messari.io/report/burn-and-mint-equilibrium

Payment Token. A utility token participating in the Burn and Mint
mechanism. Based on the number of burned $SYNQ Tokens, a corresponding
number of Payment Tokens are minted. These Payment Tokens are then
transferred to companies. Companies burn Payment Tokens to purchase hosts
services, and based on this, new $SYNQ Tokens are minted in the wallets of
hosts.

20

https://messari.io/report/burn-and-mint-equilibrium

Proofs. A number of proofs are required to verify the authenticity and
capabilities of the Synqer/Host and the usage of the system to determine
appropriate transfer of tokens.

Proof of Location and Latency. One of the key capabilities of the Multisynq
platform is that there will always be geographically nearby Synqers to provide
low-latency service to the user. It is insufficient for the Synqer to claim a
geolocation, this will be verified as part of the QoS testing service and reported
on with regular usage.

Proof of Service. Verification that the computation had been bit-identical
across all synchronisers. A Multisynq session has a regular checkpoint called a
Snapshot, where a consensus of bit identical state, and the actual amount of
data provided by the Synqer to the participants in the Session is verified.

Proof of Synchronization. A cryptographic proof verifying the reliability,
availability, scalability, geolocation and performance of the service

● reliability (of the service) — Synchronisers can guarantee a specific
uptime with all requests processed atomically and with few failures.

● availability (of the service) — Synchronisers can always be reached, and
always responsive. Not the same as reliability in that this can also include
fail-fast processing.

● scalability (of the service) — Ability to cope with both a higher and lower
demand for specific synchronisers by either improving the
performance/bandwidth of individual synchronisers (vertical scalability)
or offloading work to more synchronisers (horizontal scalability).

● performance (of the service) — An aggregate metric that encapsulates
both improving reliability, latency of request processing, availability, etc.

● location of the Synchronizer — nearby Synchronizers with known
locations triangulate on this Synchronizer to ensure the published
geolocation reflects actual.

Proof of Quality of Service. A cryptographic proof of performance, availability
and reliability of a particular synchroniser. Wraps the Proof of Synchronisation.

$SYNQ Token. A digital reward within Multisynq. It incentivizes hosts for
making synchronizers available globally, developers for network contributions,
and players for app adoption. Rising demand boosts token value. This token
serves as a reward and motivation for hosts for their work, providing
computational resource-sharing services. It is burned in the Burn and Mint
mechanism. These tokens are purchased for dollars by the company from
Multisynq or CEX. In the system, fees are paid in $SYNQ Tokens.

21

Testnet. A nearly identical replica of a cryptocurrency's full blockchain,
designed specifically for testing purposes. It serves two primary objectives: to
safely experiment with protocol changes and to allow external developers to
integrate the cryptocurrency or protocol into their applications at no risk.
Commercially, it functions as a crucial tool for ensuring the proper functionality
of updates or new features before deployment on the main network. Through
Testnets, developers can conduct thorough testing and validation to ensure
the stability and reliability of the cryptocurrency's core functionalities. In the
Testnet phase hosts for their engagement are rewarded with System Points.

32

22

LEGAL DISCLAIMER
Not An Offer. This Multisynq Foundation Litepaper is designed for general
information purposes only and does not constitute a prospectus or financial
service offering document and is not an offer to sell or solicitation of an offer to
buy any security, investment products, regulated products or financial
instruments in any jurisdiction.
Not A Contract. The information shared in this Litepaper is not all-
encompassing or comprehensive and does not in any way intend to create or
put into implicit effect any elements of a contractual relationship. The primary
purpose of this Litepaper is to provide potential Multisynq enablers and token
holders with pertinent information in order for them to thoroughly analyze the
project and make an informed decision.
Utility Tokens. $SYNQ (Multisynq tokens) are pure utility tokens, meant to be
exchanged for credits for usage of the fleet of Multisynq Synchronizers via the
Synqer/Hosts of the Multisynq application. $SYNQ is not a corporate security
and is not structured as such. Owners of $SYNQ tokens are not entitled to any
rights in Multisynq or any of its affiliates, including any equity, shares, units,
royalties to capital, profit, returns or income in the Multisynq Foundation or any
other company or intellectual property associated with Multisynq.
No Representations Or Warranties. No representations or warranties have
been made to the recipients of this Litepaper or its advisers as to the accuracy
or completeness of the information, statements, opinions or matters (express
or implied) arising out of, contained in or derived from this Litepaper or any
omission from this document or of any other written or oral information or
opinions provided now or in the future to any interested party or their advisers.
Note On Forward-looking Statements. This Litepaper contains certain
forward-looking statements regarding the business we operate that are based
on the belief of the Multisynq Foundation as well as certain assumptions made
by and information available to Multisynq. Forward-looking statements, by
their nature, are subject to significant risks and uncertainties. Forward-looking
statements may involve estimates and assumptions and are subject to risks,
uncertainties and other factors beyond our control and prediction. Accordingly,
these factors could cause actual results or outcomes that differ materially from
those expressed in the forward-looking statements. Any forward-looking
statement speaks only as of the date of which such statement is made, we
undertake no obligation to update any forward-looking statements to reflect
events or circumstances after the date on which such statement is made or to
reflect the occurrence of unanticipated events.
Trademarks. All companies and trademarks mentioned in this Litepaper are
the property of their respective owners.

23

The Missing Protocol of the Internet

24

